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Abstract

Ablation procedures targeting Atrial Tachycardia (AT)
can be drastically facilitated if the origin of the abnormal-
ity is located in advance using electrocardiogram (ECG)
signals. The ECG recordings contain so called P waves,
which represent overall summary waves generated by the
atrial depolarization. Previous work has shown the possi-
bility to predict the origin of localized AT (excluding flut-
ters) based on P wave morphology segmented from the
ECG. The present study aims to develop a machine learn-
ing algorithm that detects the likely origin of localized AT
based both on P wave characteristics extracted from ECG
and signals recorded in the Coronary Sinus (CS).

1. Introduction

Atrial tachycardia (AT) is a type of supraventricular ar-
rhythmia that affects the atria and accelerates the natu-
ral rthythm of the heart in an organized and regular fash-
ion. They are known to arise either from re-entry mech-
anisms or focal origins located within both left (LA) and
right atria (RA). Localized AT is characterized by effer-
ent circumferential potential propagation originated from
a single location. A widely spread treatment of this type
of AT is catheter ablation procedure, which requires long
and meticulous high-density mapping of both atria in or-
der to reconstruct electrical activation maps [1]. Any prior
knowledge about the localization of ongoing AT focus is
essential for the guidance of the ablation procedure, re-
ducing operating time and limiting the anatomical region
coverage during the mapping phase.

Most of the research providing insights into ATs local-
ization are based on the analysis of P waves, as it is gener-
ally known that features visually extracted from the ECG
leads help electrophysiologists to conjecture the area of
ongoing AT foci. In 1995, Tang et al. [2] analyzed the
polarity of P waves in surface electrodes to predict which
atrium (right or left) is the main source of pathological cir-
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cumstances (like abnormal focus or heterogeneous tissue).
The aVL and V1 leads were found to be the most useful
in distinguishing right from left foci: a positive P wave in
the aVL lead predicts a right focus with a sensitivity of
88% and a specificity of 79%. The sensitivity and speci-
ficity of a positive P wave in the V1 lead predicting a left
focus were 93% and 88%, respectively. Since then, sev-
eral studies have extended the analysis of P wave polarity
to predict focus location with higher precision. Kistler et
al. [3,4] studied 130 recordings of focal ATs to construct a
decision tree to find the origin among 10 possible regions,
where nodes are split following the polarity of the P waves
in the different ECG leads (see figure 1). The algorithm
managed to correctly classify the origin in 93% of 30 ATs
unseen during the training.
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Figure 1. The decision tree presented by Kistler et al. Ab-
breviations: CT - crista terminalis, TA - tricuspid annulus,
LAA (RAA) - left (right) atrial appendage, LPV (RPV)-
left (right) pulmonary vein, MA - mitral annulus

Similar work has been done by Qian et al, who found
that the combination of information from multiple leads
and regrouping of sites of origin improve the predictive
value for the prediction of the origin [5].

In this work we designed a classification model that
predicts the region containing the electrical abnormalities
perpetuating the AT. We developed an automatic machine
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learning algorithm that analyzes ECG recordings captured
by 9 electrodes of the standard 12 electrodes (as aVL, aVF,
aVR are linear combinations of I, IT and III) placed on the
patient’s torso and signals captured by a probe that remains
in the CS throughout the catheter ablation procedure. In-
spired by previous work, a set of features was designed,
including different characteristics of P waves morphology
and features extracted from CS catheter. This implemen-
tation is intended to process operating room signals in real
time.

2. Material and Methods

2.1. Dataset description and annotations

Signals used to train and test the present algorithm were
extracted from a General Electric Cardiolab recording sys-
tem from Saint-Joseph Hospital, Marseille, France, with
a sampling frequency of 977 Hz. A total of 236 10-
seconds rhythms recorded during ablation procedures were
included in the train set, 40 in the test set. Each segment
contains synchronized signals from 9 ECG and 5 CS leads.
The rhythm was annotated with the region where the ongo-
ing AT was terminated. The regions are defined as follows:
Left, Right, Septal and Left Lateral. The distribution of the
train and test dataset can be seen in 2.
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Figure 2. Distribution of our dataset.

2.2. Feature extraction

A large set of features targeting properties of the sig-
nal that are relevant for the localization of AT focus, was
designed and extracted from ECG and CS signals.

P waves were detected and segmented from ECG leads
using a deep learning model based on the U-net architec-
ture [6]. Three groups of features were subsequently gath-
ered from the P wave segments: wave polarity, peaks fea-
tures, wave integral.

On a given lead, the polarity of each P wave is deter-
mined using signal template-matching. For this purpose,

a template atlas including positive, negative, biphasic and
isoelectric waves was created by averaging manually la-
beled P wave segments. The difference between each P
wave and all 4 templates is computed using Dynamic Time
Warping [7]. This method calculates the euclidean dis-
tance between aligned (i.e. re-sampled) versions of the
input time series. The template that minimizes the dis-
tance is retained as P wave’s polarity. The polarity of a
lead segment is then defined as the most frequently pre-
dicted polarity over all its P waves.

In order to avoid potential bias caused by restriction
of P waves morphology into four groups, we decided
to broaden the feature set of morphology characteris-
tics by adding peak properties of P waves, without pre-
determining their polarity. To do so, positive and negative
peaks were detected within each P wave segment and their
number and maximal prominences (the vertical distance
between the peak and its lowest contour line) were com-
puted. The mean of these features over the lead segment is
retained.

The area under the curve formed by the P wave signal
can also provide some information about the intensity and
overall polarity of the wave. The integral is computed us-
ing the composite trapezoidal rule for each P wave and its
mean value over the lead is added to the set of P wave fea-
tures.

During the procedure, the CS probe stays still and can
record up to five different leads depending on the catheter
used. The relative positions of the same beat’s activation
onsets through leads form a so called CS sequence and can
be an indicator of whether the focus lies in the left or the
in right atrium (see Figure 3). Therefore, the activation
delays of the four subsequent CS leads relative to the first
were also included in the set of features.

Figure 5 illustrates the steps of the proposed method.
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Figure 3. CS sequence can be an indicator of the site of
origin
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Figure 4. The four P wave polarity templates.

2.3. Model and feature selection

We tackled the localization of the AT site of origin with
a classification model.

Every rhythm was cropped by a window size of 10000
frames then downsampled by a factor of 4. Given that a
10-second signal corresponds, in average, to 10 heartbeats,
several P waves are detected in every window. The P wave
features presented above are calculated for every P wave,
then the voted majority (or mean for numerical features)
is kept as the final value. Likewise, CS signals present
several activation sequences in one rhythm, so the average
is used as the final feature. A sequence is represented by
the 4 relative delays of CS electrodes (delay between 3-4
and 1-2, between 4-5 and 3-4, etc).

Feature selection techniques were used to decrease the
complexity of the model and increase its interpretability.
We combined two methods, one that evaluates each feature
independently and one that evaluates subsets of features to
have the best of the two. That led us to consider the union
of the 10 features that had the best ANOVA (Analysis of
Variance) F-statistic, and the subset of 10 features that led
to the best overall results with a Random Forest classifier
over the entire training set.

Given the relatively small dataset, and inspired by previ-
ous work, we considered tree ensemble method algorithms
[8], although we tested multiples machine learning classi-
fication models, settling on a Random Forest model as it
produced the best overall results.

To fine tune the hyperparameters of our model, we used
a 5-fold cross validation with a Bayesian optimization
method (namely, the tree-structured Parzen estimator [9]).

3. Results and discussion

Our model was trained on the 236 rhythms and tested on
a separate dataset of 40 rhythms. The 40 rhythms included

in the test set came from different procedures in order to
avoid data leakage. Our model achieves a Cohen Kappa
Score [10] of 0.55 and an overall accuracy of 74% (see
table 1 for detailed results).

The main limitation of the study was to obtain accu-
rate results from our dataset. Its imbalance and the un-
derwhelming amount of examples, particularly for obser-
vations of right and left lateral regions, were indeed major
limitations and resulted in low performances for accurately
identifying those regions as origins of AT. Still, we deem
our current results promising and we believe that allevi-
ating these limitations would lead to more satisfactory re-
sults.

division # of examples precision recall
Left 15 0.92 0.80
Right 3 0 0
Septal 18 0.68 0.94
Left Lateral 3 0 0

Table 1. Detailed results summary

Noteworthy, to go beyond the four region partition, we
could have used a finer grained tessellation of the atria, an-
notated our dataset consequently, and could have tackled
this problem as a regression over the atrial surface. Re-
gression models offer the benefit that predicted regions ad-
jacent to the annotated site of origin would yield a better
score than remote ones. That approach would however re-
quire a more substantial dataset and would fare poorly with
ours. Moreover, we believe the localization of AT for a
four region partition to already be of high interest.

Finally, we would like to emphasize the difficulty of the
problem: different heart morphologies, previous ablation
or structural arrangements may entail various conduction
anomalies; different electrode placements that lead to an
ill-posed localization problem, along with the inherent im-
perfection of the segmentation of the ECG and CS. To go
beyond, the localization of the AT site of origin would ben-
efit from more train and test data and consequently the use
of state-of-the-art deep learning models.

4. Conclusion

This work lays the foundation for future endeavors in
the field of machine learning applied to cardiology. The
suggested algorithm, that analyzes ECG and CS signals,
has shown its potential in determining the origin of local-
ized AT. Such predictive models could be deployed in the
operating room and be a useful tool to assist physicians.

Acknowledgments

We would like to express our gratitude to all members
of the Data Science Team of Volta Medical (T. Demarcy,

Page 3



»

CS3-4

CS5-6 41‘ — j /" — .
cs7-8 4/ ~ e )

CSg-10 4‘ f~ L‘» —

For each P wave compute:
- polarity features,

- peaks features,

- wave integrals.

Agglomerated set
of features (58)

Agglomerate features for each lead as:

- majority among categorical features,

- mean value among numerical. (1x9) polarity
features

/

S (4x9) peaks features

(1xQ) wave integrals

(4) delays
For each activation over all CS tracks
compute:
- Activation delay with the CS1_2
Take the mean of delays for each CS
track

Figure 5. The feature extraction process. Orange bars represent segments of detected P waves.
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